Causal discovery in heavy-tailed models

نویسندگان

چکیده

Causal questions are omnipresent in many scientific problems. While much progress has been made the analysis of causal relationships between random variables, these methods not well suited if mechanisms only manifest themselves extremes. This work aims to connect two fields inference and extreme value theory. We define tail coefficient that captures asymmetries extremal dependence variables. In population case, is shown reveal structure distribution follows a linear structural model. holds even presence latent common causes have same index as observed Based on consistent estimator coefficient, we propose computationally highly efficient algorithm estimates structure. prove our method consistently recovers order compare it other well-established nonextremal approaches discovery synthetic real data. The code available an open-access R package.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formal Models of Heavy-Tailed Behavior in Combinatorial Search

Recently, it has been found that the cost distributions of randomized backtrack search in combinatorial domains are often heavytailed. Such heavy-tailed distributions explain the high variability observed when using backtrack-style procedures. A good understanding of this phenomenon can lead to better search techniques. For example, restart strategies provide a good mechanism for eliminating th...

متن کامل

Estimation in nonlinear mixed-effects models using heavy-tailed distributions

Nonlinear mixed–effects models are very useful to analyze repeated measures data and are used in a variety of applications. Normal distributions for random effects and residual errors are usually assumed, but such assumptions make inferences vulnerable to the presence of outliers. In this work, we introduce an extension of a normal nonlinear mixed–effects model considering a subclass of ellipti...

متن کامل

Bayesian Discovery of Linear Acyclic Causal Models

Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-...

متن کامل

Causal discovery with continuous additive noise models

We consider the problem of learning causal directed acyclic graphs from an observational joint distribution. One can use these graphs to predict the outcome of interventional experiments, from which data are often not available. We show that if the observational distribution follows a structural equation model with an additive noise structure, the directed acyclic graph becomes identifiable fro...

متن کامل

Nonlinear causal discovery with additive noise models

The discovery of causal relationships between a set of observed variables is a fundamental problem in science. For continuous-valued data linear acyclic causal models with additive noise are often used because these models are well understood and there are well-known methods to fit them to data. In reality, of course, many causal relationships are more or less nonlinear, raising some doubts as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Statistics

سال: 2021

ISSN: ['0090-5364', '2168-8966']

DOI: https://doi.org/10.1214/20-aos2021